skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Madjet, Mohamed El-Amine"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Extreme light confinement in plasmonic nanosystems enables novel applications in photonics, sensor technology, energy harvesting, biology, and quantum information processing. Fullerenes represent an extreme case for nanoplasmonics: They are subnanometer carbon-based molecules showing high-energy and ultrabroad plasmon resonances; however, the fundamental mechanisms driving the plasmonic response and the corresponding collective electron dynamics are still elusive. Here, we uncover the dominant role of electron correlations in the dynamics of the giant plasmon resonance (GPR) of the subnanometer system C60by using attosecond photoemission chronoscopy. We find a characteristic photoemission delay of up to about 300 attoseconds that is purely induced by coherent large-scale electron correlations in the plasmonic potential. These results provide insights into the nature of the plasmon resonances in subnanometer systems and open perspectives for advancing nanoplasmonic applications. 
    more » « less
    Free, publicly-accessible full text available February 14, 2026
  2. Light-induced energy confinement in nanoclusters via plasmon excitations influences applications in nanophotonics, photocatalysis, and the design of controlled slow electron sources. The resonant decay of these excitations through the cluster’s ionization continuum provides a unique probe of the collective electronic behavior. However, the transfer of a part of this decay amplitude to the continuum of a second conjugated cluster may offer control and efficacy in sharing the energy nonlocally to instigate remote collective events.With the example of a spherically nested dimer Na20@C240 of two plasmonic systems we find that such a transfer is possible through the resonant intercluster Coulombic decay (RICD) as a fundamental process. This plasmonic RICD signal can be experimentally detected by the photoelectron velocity map imaging technique. 
    more » « less
  3. null (Ed.)